Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
نویسندگان
چکیده
منابع مشابه
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distributio...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملNon-stationary signal classification using joint frequency analysis
Time-varying short-term spectral estimates have been successfully applied in many classification tasks. However, they are still insufficient for many non-stationary signals where time-varying information is useful. In this paper, we propose to improve the deficiencies of current short-term feature analysis by adding information to describe the time-varying behavior of the signals. Our proposed ...
متن کاملTime-Frequency Based Feature Extraction for Non-Stationary Signal Classification
Biosignal recordings are useful for extracting information about the functional state of an organism. For this reason, such recordings are widely used as tools for supporting medical decision. Nevertheless, reaching a diagnostic decision based on biosignal recordings normally requires analysis of long data records by specialized medical personnel. In several cases, specialized medical attention...
متن کاملSpectral Intersections for Non-Stationary Signal Separation
We describe a new method for non-stationary noise suppression that is simple to implement yet has performance that rivals far more complex algorithms. Spectral Intersections is a model based MMSE signal separation method that uses a new approximation to the observation likelihood. Furthermore, Spectral Intersections uses an efficient approximation to the expectation integral of the MMSE estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Signal and Information Processing
سال: 2012
ISSN: 2159-4465,2159-4481
DOI: 10.4236/jsip.2012.33043